출처: https://astrocosmos.tistory.com/202 [ASTROCOSMOS:티스토리] 프로젝트_스터디] 집계구별 일별소비지역별 카드소비패턴 분석 :: 하나둘셋넷
728x90

집계구별 일별소비지역별 카드소비패턴 분석

집계구별 일별소비지역별 카드소비패턴.csv
0.03MB
원본

 

강남에서 카드이용건수계 비율, 카드이용금액계 비율

강남 소비 분석

 

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rc('font',family='Malgun Gothic')
plt.rcParams['font.family']
gu = pd.read_csv('집계구별 일별소비지역별 카드소비패턴.csv',encoding='CP949')
gu_seoul = gu.loc[gu['가맹점주소광역시도(SIDO)']=='서울' , ['가맹점주소시군구(SGG)','업종대분류(UPJONG_CLASS1)','카드이용건수계(USECT_CORR)','카드이용금액계(AMT_CORR)']]
# display(gu_seoul[gu_seoul['가맹점주소시군구(SGG)']=='강남구'])
gu_gangnam = gu_seoul[gu_seoul['가맹점주소시군구(SGG)']=='강남구']
gu_gangnam_use = gu_gangnam.groupby(by='업종대분류(UPJONG_CLASS1)', as_index=False)[['카드이용건수계(USECT_CORR)']].sum()
# display(gu_gangnam_use)
# display(gu_gangnam_use.info())
gu_gangnam_money = gu_gangnam.groupby(by='업종대분류(UPJONG_CLASS1)', as_index=False)[['카드이용금액계(AMT_CORR)']].sum()
# display(gu_gangnam_money)
# plt.pie(데이터프레임['컬럼명'].values, labels = 데이터프레임['컬럼명'].index(), autopct='%.2f%%')
plt.figure(figsize = (10,10))
plt.subplot(1,2,1)
plt.pie(gu_gangnam_use['카드이용건수계(USECT_CORR)'].values, labels=gu_gangnam_use['업종대분류(UPJONG_CLASS1)'] )
plt.legend(loc='upper left')
plt.title('강남에서 카드이용건수계 비율')
plt.subplot(1,2,2)
plt.pie(gu_gangnam_money['카드이용금액계(AMT_CORR)'].values, labels= gu_gangnam_money['업종대분류(UPJONG_CLASS1)'])
plt.legend(loc='upper left')
plt.title('강남에서 카드이용금액계 비율')
plt.tight_layout()

 

년도별 카드이용금액계의 변화

년도별 소비금액 변동

 

import numpy as np
import pandas as pd
pd.set_option('display.float_format', lambda x:'%.3f'%x) # 지수 표현 없애기
import matplotlib.pyplot as plt
plt.rc('font',family = 'Malgun Gothic')
plt.rcParams['font.family']
import seaborn as sns
import scipy.stats as spst
sobi = pd.read_csv( '집계구별 일별소비지역별 카드소비패턴.csv', encoding ='CP949')
sobi_year = sobi.loc[:,['기준일자(YMD)','카드이용금액계(AMT_CORR)']]
sobi_year['기준일자(YMD)'] = sobi_year['기준일자(YMD)'].astype('str')
sobi_year['기준일자(YMD)'] = sobi_year['기준일자(YMD)'].str[:4]
A= sobi_year.loc[sobi_year['기준일자(YMD)']=='2016','카드이용금액계(AMT_CORR)']
B= sobi_year.loc[sobi_year['기준일자(YMD)']=='2017','카드이용금액계(AMT_CORR)']
C= sobi_year.loc[sobi_year['기준일자(YMD)']=='2018','카드이용금액계(AMT_CORR)']
D= sobi_year.loc[sobi_year['기준일자(YMD)']=='2019','카드이용금액계(AMT_CORR)']
E= sobi_year.loc[sobi_year['기준일자(YMD)']=='2020','카드이용금액계(AMT_CORR)']
display(spst.ttest_ind(D,E))
# print('\n','='*100,'\n21년도의 마지막 값은 7월에서 끝나므로 21년도는 뺀다',sep='')
# < 특정 행 삭제 >
sobi_year.drop( sobi_year[ sobi_year['기준일자(YMD)'].str.contains('2021')].index, inplace = True  )
feature = '기준일자(YMD)'
target = '카드이용금액계(AMT_CORR)'
# sns.barplot(x='컬럼명', y='컬럼명', data=데이터프레임)
sobi_year[feature] = sobi_year[feature].astype('int')
sns.barplot(x=feature, y= target, data=sobi_year )

 

도별 카드이용금액의 관계

도별 카드이용금액 비교

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rc('font',family='Malgun Gothic')
plt.rcParams['font.family']
import scipy.stats as spst
import seaborn as sns
spend = pd.read_csv('집계구별 일별소비지역별 카드소비패턴.csv', encoding = 'CP949')
spend_area = spend.loc[:,['가맹점주소광역시도(SIDO)','카드이용금액계(AMT_CORR)']]
print('\n','='*100,'\n큰 단위로 나누기',sep='')
spend_area['가맹점주소광역시도(SIDO)'] = spend_area['가맹점주소광역시도(SIDO)'].replace({
                                        '서울':'수도권',
                                        '경기':'수도권',
                                        '인천':'수도권',
                                                                      
                                        '대전':'충청도',                              
                                        '충남':'충청도',
                                        '충북':'충청도',
                                        '세종':'충청도',
                                                                      
                                        '광주':'전라도',
                                        '전남':'전라도',
                                        '전북':'전라도',
                                                                      
                                        '부산':'경상도',
                                        '경북':'경상도',
                                        '경남':'경상도',
                                        '대구':'경상도'
                                      
                                      })
feature = '가맹점주소광역시도(SIDO)'
target = '카드이용금액계(AMT_CORR)'
plt.title('도별와 카드이용금액의 관계 < 범주 & 숫자 >')
sns.barplot(x=feature, y=target, data=spend_area)
728x90

+ Recent posts