출처: https://astrocosmos.tistory.com/202 [ASTROCOSMOS:티스토리] 'metacode' 태그의 글 목록 (2 Page) :: 하나둘셋넷
728x90

[메타코드 강의 후기] 통계 기초의 모든것 올인원_회귀분석_Part2_240630

https://www.metacodes.co.kr/edu/read2.nx?M2_IDX=30098&page=1&SC_EC1_IDX=442&SC_EC2_IDX=929&sc_is_discount=&sc_is_new=&EP_IDX=8382&EM_IDX=8208

 

통계 기초의 모든것 올인원 [ 1편, 2편 ]ㅣ18만 조회수 검증

 

www.metacodes.co.kr

안녕하세요

메타코드 서포터즈 5기 송주영입니다.

 

한 주를 마무리하면 지금까지 듣던 "통계 기초의 모든 것 올인원" 강의를 완강하게 되어 뿌듯함을 느꼈어요

ADsP 자격증을 따면서 기초적인 통계를 배우기는 했지만 이렇게 하나의 강의를 온전히 들으니 자격증에서는 배우지 못한 내용들을 배울 수 있어서 좋았어요

 

만약 비전공이시거나, 비전공 출신으로 자격증은 취득했으나 아직 통계 개념이 어렵다면 메타코드 통계 강의를 들어보면서 큰 틀을 잡아보시는 것도 좋을 거라 생각해요

 

"통계 기초의 모든것 올인원_회귀분석_Part2" 강의 후기 작성하겠습니다.

 

잔차제곱합, MSE

$\widehat{y}$ 추정회귀식에 해당한다.

이를 풀어서 작성하면 “베타 0 hat”, “베타 1 hat”, “x i”를 통해 작성할 수 있다.

MSE는 SSE를 자유도로 나눈 값을 말한다.

“시그마 제곱 hat”으로 표시하며, 오차분산의 불편(unbiased) 추정량이다.

 

$ \beta _{1} $의 추정 및 검정(1)

“a i”라는 새로운 term을 하나 만들었으며, 이 식은 아래 추정 및 검정 과정에서 사용된다.

“베타 1”에 대한 추정과 검정을 하는 것이 목표이다.

이러한 추정과 검정을 할 때는 항상 기댓값과 Variance를 구하는 과정을 수행했으며, 이 경우에도 마찬가지이다.

“베타 1 hat”에 대한 식은 값들을 차례로 대입하고 나누어주는 과정을 수행하여 구한다.

“베타 1 hat” 식의 마지막 부분에서 “베타 0”에는 “a i”에 해당하는 값의 summation이고, “베타 1”에는 ‘a i”값의 summation에 “x i”가 곱해져 있다.

“a i”의 summation의 값은 0이고, “베타 1”에 곱해져 있는 부분은 1이 되므로 최종적으로 “베타 1 hat”에 대한 값은 “베타 1”이 된다.

“a i”의 summation 식을 보면 분자값이 0이 되게 되므로 전체 값이 0이 된다.

 

$ \beta _{1} $의 추정 및 검정(2)

“a i hat”의 제곱식을 대입한 뒤 정리하면 분자가 “시그마 제곱” 형태가 된다.

“시그마 제곱”의 불편추정량은 MSE에 해당한다.

“베타 1 hat”에 대한 Variance 값은 자유도가 (n-2)인 t 분포를 따른다.

신뢰구간을 설정한다면 양측 검정이므로 “베타 1 hat”에 똑같은 식을 +, -를 해준다.

이때 양측 검정이므로 알파 값의 1/2에 해당하는 사용한다.

 

$\beta _{0}$ 의 추정 및 검정

“시그마 제곱”은 “MSE”에 해당하므로, “시그마 제곱” 값을 모른다면 “MSE”를 구하여 사용한다.

검정통계량에서 분모 부분은 Standard Error이며, “시그마 제곱”를 모르기 때문에 “MSE”를 넣었다.

분자는 “베타 0 hat”에서 “베타 0 hat”의 기댓값인 “베타 0”를 빼준다.

이렇게 구한 검정통계량 값은 자유도가 (n-2)인 T 분포를 따른다.

 

변동분해, 분산분석

총 변동 $y_{i}  - \overline{y}$ 식은 개별관측값과 이에 대한 평균의 차이다.

식에서 각 항을 제곱하면, 설명이 안되는 변동은 잔차제곱합 SSE가 되고 설명이 되는 변동은 회귀제곱합 SSR이 된다.

자유도는 총 변동, 잔차변동, 회귀변동이 각각 (n-1), (n-2), n이다.

각각의 자유도로 나누어주면 MSE와 MSR 값을 구할 수 있다.

 

회귀모형 검정_F 검정

단순 선형회귀에서는 “베타 1 = 0”이 귀무가설이다.

만약 다중 선형회귀가 된다면 베타 1, 베타 2, 베타 3, ..으로 늘어난다.

F 통계량 식에서 MSR은 자유도가 1, MSE는 자유도가 (n-2)이다.

단측검정이므로 유의수준 알파를 그대로 사용한다.

 

강의를 완강하며, 어려운 점들도 있었지만 선생님께서 쉬운 예시를 들어주셔서 따라갈 수 있었던 것 같아요.

진도의 뒷 부분에 도달하니 앞 부분에서 내가 어떤 개념을 덜 이해하고 넘어갔는지 체감할 수 있었고, 이에 대해 다시 복습할 필요성을 느꼈습니다.

 

다음 수업으로는 Python을 활용하여 통계 이론을 실습하는 수업을 할지 아니면 다른 수업을 들을지 고민이 드네요

현재 생각으로는 그래도 실습을 하며 배운 개념을 계속하여 적용하다 보면 통계 개념에 익숙해지고 이해가 되지 않을까 생각을 하고 있습니다.

 

이상으로 "통계기초의 모든 것 올인원" 강의 후기는 마무리하도록 하겠습니다.

감사합니다!!

 

728x90
728x90

[메타코드 강의 후기] 통계 기초의 모든것 올인원_회귀분석_Part1_240629

메타코드M (metacodes.co.kr)

 

통계 기초의 모든것 올인원 [ 1편, 2편 ]ㅣ18만 조회수 검증

 

www.metacodes.co.kr

안녕하세요 메타코드 서포터즈 5기로 활동하고 있는 송주영입니다.

날씨가 더워짐에 따라 더욱 공부하기가 힘들어지고 있네요ㅠ

 

이번주에는 "통계 기초의 모든 것 올인원" 강의 완강을 앞두고 있어서 뿌듯함을 느끼고 있습니다.

서포터즈 활동을 하지 않았더라면 이렇게 꾸준히 강의를 들을 수 있었을지 모르겠네요

 

아래부터는 "회귀분석_Part1"에 대해 정리한 내용을 올릴게요

 

 

회귀분석이란

첫 번째 예시인 기업의 시가총액, 투자활동과 주식 수익률은 변수가 두 개이므로 다중 회귀분석에 해당한다.

만약, 10년 데이터로 주식 수익률을 예측했는데, 예측률이 높다고 해서 현재의 주식 수익률을 예측할 수 있는 것은 아니다.

과거 예측은 과거에 빈 데이터가 있는 경우에 예측을 통하여 그 데이터를 채울 수 있음을 말한다.

회귀분석의 종류 중에서 이 강의에서는 다중선형회귀분석에 대해 배울 것이다.

 

회귀분석 종류

단순선형 회귀 모형에서는 추정해야 하는 대상이 “베타 0”와 “베타 1” 두 가지이다.

다중선형회귀 모형으로 넘어간다면 식에서 볼 수 있듯이 추정해야 하는 대상이 더 증가하게 된다.

비선형 회귀 모델은 분수 형태와, exponential 형태인 것이 특징이다.

다변량 회귀모델은 종속변수 Y가 여러 개인 것을 말한다.

 

회귀분석 - 단순회귀

추정해야 하는 것은 “베타 0”와 “베타 1” 두 가지이다.

추정 단순회귀식에서는 “입실론” term은 없어야 한다. 위 식은 모델에 대한 내용이므로 오차인 “입실론”이 필요한 것이다.

오차항에 대한 가정은 잔차에 대한 진단을 수행하는 것이다.

오차항에 대한 기댓값이 없다는 내용은 outlier가 없음을 의미한다.

 

회귀분석 - 종속변수 분포

식에 있는 “입실론”은 확률변수이므로 y 또한 당연히 확률변수이다.

기댓값 식에서, 오차항의 기댓값은 0이므로 “입실론” 항은 사라지게 된다.

Variance 식에서는 “베타0”, “베타1”은 값이 실제로 있는 것이기 때문에 Variance에 영향을 받지 않고, “입실론” 항만 남게 된다.

종속변수 yi 에대한 분산은 “시그마 제곱”으로 떨어지기 때문에 정규분포를 따른다.

 

회귀분석 - 최소제곱법

회귀계수를 추정하는 방식 중 “최소제곱법”에 대해 배운다.

기본 식에서 입실론을 제외한 항을 반대편으로 넘기면 “입실론”에 대한 식을 얻을 수 있다.

오차의 제곱합이 최소가 될 수 있도록 하는 선을 찾는 방법아 “최소제곱법”이다.

최소제곱법을 푸는 방식 중에서 편미분을 활용하는 방법이다.

 

편미분을 활용한 최소제곱법의 해

앞의 최소제곱법에 대해 자세하게 풀어보는 과정이다.

“베타 0”와 “베타 1”에 대한 편미분을 수행하여 식을 두 개 만들었다.

이렇게 만들어진 두 식에 대해 뺄셈을 수행한다.

베타를 기준으로 좌우 식을 정리하고 최종식을 도출한다.

 

이상으로 이번 강의에 대한 내용은 모두 정리했습니다.

수업을 들으면서, 데이터 분석에 앞서 갖춰야 할 통계 지식의 난이도가 높다고 느꼈어요

 

편미분을 활용하여 최소제곱법의 해를 구할 때는, 대학교 시절에 배웠던 편미분에 대한 지식을 끄집어 내는 과정도 필요했네요

대학교에서 배운 내용과 더불어 이러한 강의들을 꾸준히 들으며 데이터를 보다 정확하고 의미있게 분석할 수 있는 능력을 키워야겠다고 다짐했습니다.

 

글 읽어주셔서 감사합니다!!!

728x90
728x90

[메타코드 강의 후기] 통계 기초의 모든것 올인원 - 이원배치 분산분석_240623

메타코드M (metacodes.co.kr)

 

통계 기초의 모든것 올인원 [ 1편, 2편 ]ㅣ18만 조회수 검증

 

www.metacodes.co.kr

안녕하세요 메타코드 서포터즈로 활동하고 있는 송주영입니다.

저는 작년 하반기부터 데이터 분석가의 꿈을 꾸고 이 분야를 공부하기 시작했어요.

 

메타코드는 데이터 분석, 인공지능 등 다양한 분야의 강의를 제공하고 있는 강의 사이트입니다. 이 분야의 입문자들에게는 어떤 강의가 좋을지 직관적으로 안내해주는 것이 메타코드 사이트의 장점이라고 생각합니다. 꾸준히 이벤트도 진행하고 있으니 가벼운 마음으로 방문해보셔도 좋을거 같아요

 

요새 꾸준히 공부하기가 어려워서ㅠ 서포터즈 활동을 하면 보다 몰입감을 가지고 강의를 들을 수 있을거 같아서 시작했고, 메타코드가 성장하는 모습을 보니 간접적으로나마 기여했다는 생각이 들어서 뿌듯함 또한 느끼고 있습니다.

 

"통계 기초의 모든 것 올인원" 강의 중 이원배치 분산분석에 대한 강의 후기 작성해봤습니다.

 

반복이 없는 경우 이원배치 분산분석 Table

왼쪽이 인자 A에 대한 treatment이다.

MBTI라고 생각하면 위에서부터 ISFJ, ENFP 이렇게 내려온다고 생각하자

B에 대해서는 성격, 혈액형을 예시로 생각해보자

각 열에 대하여 B에 대한 number는 고정되어 있고, A에 대한 number가 변화함을 확인하자

. (점)이 찍혀있는 것은 어떤 인자를 평균으로 바꾸었는지를 나타낸다.

 

반복이 없는 경우 이원배치 분산분석 관찰모형

 

큰 틀에서는 일원 분산분석과 비슷하고, 교호작용이 추가되었다.

신경 써야할 부분은 Notation이 더 추가되었기 때문에 이에 대해 정확히 파악하는 것이다.

관찰값 모형의 역할은 큰 가이드라인이다. 이 모형에 따라서 각각의 항들을 찾아가야 한다.

관찰값 모형을 간단하게 만듦으로써 이미 연구가 되어있는 값들을 가져올 수 있게 된다.

 

반복이 없는 경우 이원배치 분산분석 제곱합 분해

제곱합 공식을 보면, 앞 부분은 처리에 의한 효과(집단 간 변동)을 말하고, 뒷 부분은 잔차에 대한 값을 표현한다.

SST는 일원 분산분석과 같고,

뒤의 두 항은 각각 A에 의한 처리효과와 B에 의한 처리효과를 나타낸다.

마지막 항은 잔차에 대한 값이다.

 

반복이 없는 경우 이원배치 분산분석 ANOVA Table

Table을 작성해보면 A와 B의 자유도는 각각 ( p - 1 ), ( q - 1 )이 된다.

각각의 요인이 가질 수 있는 레벨의 갯수에서 1을 뺀 값을 말한다.

F 통계량은 MSE를 분모로 둔 상태에서 내가 검증하고 싶은 요인을 분자에 넣으면 구할 수 있다.

F 분포를 사용하는데, 단측 검정이기 때문에 일원 분산분석에서와 마찬가지로 통계량 값을 그대로 사용해야 한다.

 

반복이 있는 경우의 이원배치 분산분석

이원배치 분산분석에서 반복이 있는 경우에 대한 내용이다.

주효과 분석은 일원배치 분산분석에서와 마찬가지로 각각의 인자에 의한 효과를 말한다.

상호작용 효과는 주 효과들 간에 교호작용을 말한다.

예를 들면, 인자 A(성적)에 의해 종속변수(독서시간)가 변화를 나타내는데 인자 B(혈액형) 또한 영향을 주는 상황을 말한다.

 

반복이 있는 경우의 이원배치 분산분석 관찰모형

이원배치 분산분석에서 반복이 있는 경우의 관찰값 모형이다.

반복이 없는 경우의 식과 비교하면, 감마값이 추가되었다는 차이가 있다.

감마는 인자들 간에 교호작용에 대한 값을 말한다.

오차항의 경우, 일원배치 분산분석에서 배웠던 오차항에 대한 기본 가정을 따르고 있어야 한다.

 

강의후기

 

저번 일원배치 분산분석 강의보다 식에 Notation이 많아져서 힘들게 느껴졌네요ㅠ

강의를 들으면서 중간중간에 정지를 하고 정리하는 시간을 많이 가졌어요

저번 강의에서처럼 MBTI, 성적 등을 예시로 들며 설명해주셔서 그래도 이해할 수 있었던거 같아요

좀 더 난이도가 높아졌지만, 더 어려웠던 만큼 다 듣고 정리하니 성취감이 더 크게 다가오네요

 

데이터 분석을 하다보면 코딩 스킬에 그치지 않고, 통계 지식을 체계적으로 쌓는 것이 중요한데 메타코드에서 이러한 강의를 들으니 큰 도움이 된다고 느껴집니다

 

 

728x90
728x90

[메타코드 강의 후기] 통계 기초의 모든것 올인원 - 일원분산분석_240623

메타코드M (metacodes.co.kr)

 

통계 기초의 모든것 올인원 [ 1편, 2편 ]ㅣ18만 조회수 검증

 

www.metacodes.co.kr

안녕하세요 메타코드 서포터즈로 활동하고 있는 송주영입니다.

저는 작년 하반기부터 데이터 분석가의 꿈을 꾸고 이 분야를 공부하기 시작했어요.

 

메타코드는 데이터 분석, 인공지능 등 다양한 분야의 강의를 제공하고 있는 강의 사이트입니다. 이 분야의 입문자들에게는 어떤 강의가 좋을지 직관적으로 안내해주는 것이 메타코드 사이트의 장점이라고 생각합니다. 꾸준히 이벤트도 진행하고 있으니 가벼운 마음으로 방문해보셔도 좋을거 같아요

 

요새 꾸준히 공부하기가 어려워서ㅠ 서포터즈 활동을 하면 보다 몰입감을 가지고 강의를 들을 수 있을거 같아서 시작했고, 메타코드가 성장하는 모습을 보니 간접적으로나마 기여했다는 생각이 들어서 뿌듯함 또한 느끼고 있습니다.

 

"통계 기초의 모든 것 올인원" 강의 중 일원배치 분산분석에 대한 강의 후기 작성해봤습니다.

 

분산분석, 기본가정

반응변수는 종속변수와 같은 개념이다.

인자의 경우 독립변수의 개념이며, 반응변수에 어떠한 영향을 주는지 알아보는 것이 목표이다.

MBTI를 예시로 들면, MBTI 하나하나의 특성이 “처리(treatment)” 개념의 수준의 개념이다. 즉 16가지의 수준이 존재

분석에 앞서서 정규분포, 등분산, 오차가 독립이다는 기본 가정을 확인해야 한다.

 

분산분석의 식과 종류

그룹 간 변동이 우리가 검정하고 싶은 내용이다.

즉 MBTI가 그룹별로 어떻게 나눠지는지 등의 내용을 말한다.

그룹내 변동은 말 그대로 같은 집단 안에서 어느 정도의 차이가 있는지를 말한다.

인자가 몇 개인지에 따라 “일원배치분산분석”인지 “이원배치분산분석”인지로 나뉜다.

“이원배치분산분석”의 경우 인자가 두 개이므로 이들의 교호 작용 또한 생각해야 한다.

 

일원배치 분산분석

일원배치 분산분석에서 k개의 모집단의 개념을 보면, k는 요인이 취할 수 있는 값의 개수를 말한다.

Unique한 값의 개수를 말한다.

앞서 배웠던 기본 가정대로 각 집단은 독립이고 정규분포를 따라야 한다.

분산은 같아야 하지만, 평균은 다를 수 있음을 유의해야 한다.(*MBTI를 예시로 생각하면 이해가 쉽다)

 

반복수가 같은 경우의 일원배치 분산분석 표

반복수 : 특정 처치를 가할 때 그 안에 그룹이 몇 개가 있는가?

예시로는 “MBTI 별로 그 집단 안에 몇 명이 있는지”를 들 수 있다.

처리별로 본다면 각 처리별로는 크기가 n으로 동일하다.

y11에서 앞 부분이 k에 해당하고 뒷 부분의 숫자가 샘플의 숫자를 의미한다.

입실론은 개별 관측값이 가질 수 있는 오차를 말한다.

 

일원배치의 관찰값 모형

알파 i 가 우리가 관심을 가져야 하는 대상이다.

알파 i는 MBTI라고 한다면, 그 안의 특성이 어느 정도의 영향을 주는 지를 말한다.

모평균과 전체 모평균과의 차이가 얼마나 나는지를 확인하면 영향력을 파악할 수 있다.

수식을 관찰하면, 위 식에서 ( 뮤 i - 뮤 ) = ( 알파 i )가 된다.

 

일원배치 분산분석에서 오차항 가정의 중요성

분산분석을 진행한 이후에는 오차항에 대해 집중적으로 검증을 한다.(=잔차 진단)

오차항이 아래의 4가지 조건을 모두 만족하는 지를 확인하는 과정을 말한다.

오차가 있어야 분석이 의미있는 것이기 때문에, 오차항 검증이 중요성을 갖는다.

귀무가설 식에서 ( 뮤 i )와 ( 알파 i )가 같은 것은 관찰값 모형식에서 보면 ( 뮤 )는 하나의 상수값으로 볼 수 있기 때문이다.

 

제곱합 분해

식의 각 부분을 구분하자면 앞 부분은 처리 효과에 대한 값이고 뒷 부분은 잔차에 대한 값이다.

식에서 SST는 Sum of Squares Total로 잔차들의 총합을 말하고,

처리간 분산 SSt는 Sum of Squares Treatment로 처리 효과의 합,

처리 내 분산 SSE는 Sum of Squares Error로 잔차에 대한 값이다.

 

평균 제곱

평균제곱은 Mean Squares total로 제곱합에서의 값을 자유도로 나눈 값을 의미한다.

평균제곱은 뷴산의 추정량(분산 estimator)에 해당한다.

목표는 집단 내 효과가 집단 간 효과보다 큰 것인가를 알아내는 것이다.

처리에 의한 효과가 더 커야 분산분석이 의미를 갖는다.

 

강의후기

 

이번 강의에서는 수식과 각 수식에 대한 Notation이 많아서 집중을 하지 않으면 흐름을 놓치지 쉬웠어요

공식에 대한 증명을 해주시고, 이해하기 쉽게 MBI를 예시로 들어주신 것이 큰 도움이 되었어요!!

비전공자에게 어려운 부분이 있기도 했지만, 설명이 자세하여 그래도 들을만 했던 거 같아요

 

서포터즈로서 글을 작성하다보니 수업 때 배운 내용을 정리할 수 있어서 좋았어요

728x90
728x90

[통계 기초의 모든것 올인원] 메타코드 강의 후기 - 대응비교, 모비율, 모분산 비교

메타코드M (metacodes.co.kr)

 

통계 기초의 모든것 올인원 [ 1편, 2편 ]ㅣ18만 조회수 검증

 

www.metacodes.co.kr

 

대응비교

paired t-test, 같은 개체에 대하여 실험 전후 값을 측정한다.

따라서 독립이라고 보기는 어렵다. ⇒ 독립 가정이 빠진다.

대응표본은 독립이 아닌 것을 말하며, 이들을 통해 비교를 수행하는 것이 대응비교의 개념이다.

모표분편차가 들어가지 않기 때문에 표본 표분편차를 사용하고 t 분포를 따르는 통계량을 사용한다.

 

두 모비율 비교

Variance는 독립이라면 괄호 안이 각각 더하기로 나누어질 수 있다.

표본의 크기가 큰 경우에 대한 수식은, Variance에 대해 식을 나누는 과정을 수행하고 각각에 대한 Var 값을 대입한 것이다.

마지막 식에서 분모 부분이 복잡하게 보이지만 단순하게 위에서의 Var 값을 대입한 것 뿐이다.

최종적으로는 표준정규분포를 따르게 됨을 말하며 따라서 Z 통계량을 사용한다.

 

두 모비율 비교

( 알파 / 2 ) 쓰여 있음을 통해 양측검정을 수행함을 알 수 있다.

“1. p1 - p2 신뢰구간” 수식에서 루트 안에 있는 값은 앞 슬라이드에서의 Variance에 해당하며, 두 집단이 독립이기 때문에 각각의 Variance를 더하기로 나눈 것이다.

“2. 표본의 크기가 큰 경우” 수식에서 귀무가설이 맞다면 기댓값 E는 당연하게 0이 된다.

공동 모비율 p의 합동 추정량 식은, 합동이라는 개념이므로 분자와 분모에 각각에 대한 합의 값이 적혀있다고 우선 받아들인다.

 

예시 문제

강의 A를 듣고 시험을 본 경우와 강의 B를 듣고 시험을 본 경우를 비교한 것이다.

강의 A의 합격률은 0.7, 강의 B의 경우 합격률은 0.6이 된다.

95%에 대한 신뢰 구간이므로 알파는 1-0.95 = 0.05가 된다.

양측 검정이므로 알파 = 0.025일 때의 Z 통계량 값은 1.96이 된다.

우측은 Standard Error 수식이다.

 

예시 문제 2

강의 A를 수강한 학생이 합격률이 더 높은지 확인하고 싶으므로, 귀무가설은 두 집단의 합격률이 같다가 된다.

합동추정량 계산에서 분모에는 각각의 표본의 숫자를 더하므로 100 + 150이 된다.

합격자에 대해서도 70 + 90이 된다.

위에서 구한 값들에 따라 계산을 진행하면 값은 1.6137이 된다.

 

모분산 비교

등분산 가정은 집단 간의 검정에 중요한 가정이 된다.

“2. 두 모분산 비교의 가정” 식에서 각각의 정규분포에 대해 시그마 값이 같게 되어 있고 서로 독립이라는 조건이 있으며,

이 경우에는 Levene’s Test를 사용한다고 되어 있다.

귀무가설은 두 모분산이 비율이 1이 된다(=같다)이다.

728x90
728x90

[통계 기초의 모든것 올인원] 메타코드 강의 후기 - 모분산, 두 집단 비교

메타코드M (metacodes.co.kr)

 

통계 기초의 모든것 올인원 [ 1편, 2편 ]ㅣ18만 조회수 검증

 

www.metacodes.co.kr

 

모분산 검정의 필요성, 예시

모분산 검정은 두 가지 집단이 모평균의 차이가 있냐 없냐를 판단할 때 중요하다.

왜냐하면, 그러한 검정은 두 집단의 모분산이 같다가 전제되어야 하기 때문이다.

등분산 조건을 의미한다.

이 문제에서 대립 가설은 분산이 0.1보다 작다는 것이 된다.

확률 표현은 오른쪽 영역을 기준으로 한다.

기각역은 10.117이 되는데 검정통계량 계산량은 9.5가 되므로 귀무가설을 기각할 수 있게 된다.

 

집단 비교

두 집단의 비교에는 분산이 고려되어야 한다는 것이 중요한 포인트이다.

분산이 고려되었을 때 객관적 비교가 가능하기 때문이다.

모분산은 아는데, 정규 모집단이면 Z 통계량을 사용한다.

모분산은 모르는데, 정규 모집단이긴 하다면,

모분산이 같은지 혹은 모분산이 다른지 확인하는 절차가 필요하다.

 

모분산 아는 경우의 모집단 비교

정규모집단 가정이 되어있는 상태이다.

기댓값 E의 경우 하나의 항에서 두 개의 항으로 분리가 가능하다.

이때, 각각의 기댓값은 뮤이다.

Variance는 분해를 할 때, 독립이라는 전제가 되어있다면 분해가 가능하다. 이때, 괄호 안이 + 부호이든 - 부호이든 더하기 형태로 분해된다.

 

모집단 비교 - 예시 #1

문제 조건에서 모분산을 알고 있다고 가정한다.

같은 지 물어보는 것이기 때문에 양측 검정에 해당한다.

대립 가설은 키 평균이 같지 않다는 것이 된다.

검정 통계량 식은 윗 슬라이드에 있던 내용이다.

검정은 귀무가설의 입장을 기준으로 한다. 즉, 일단 귀무 가설의 말이 맞다고 가정한다는 의미이다.

뮤 1과 뮤2는, 귀무가설이 “평균이 같다”이므로 0이 된다.

계산 결과가 2.63이므로 귀무가설을 기각할 수 있게 된다.

 

모집단 비교 - 예시 #2

t 통계량을 사용하는 경우의 문제이다.

귀무가설은 평균이 같다는 경우가 되고, 대립 가설은 같지 않다가 된다.

같지 않다가 조건이므로 양측 검정에 해당하며 ( 알파 / 2 ) 값을 확인한다.

이 문제에서는 계산 결과가 유의수준보다 크기 때문에 귀무가설을 기각할 수 있게 된다.

슬라이드에서 검정 통계량에 Z 가 아니라 T로 수정해야 한다.

 

모집단 비교 - 예시 #3

다른 조건은 같지만 분산이 다른 경우이다.

이분산인 경우에는 t 검정 통계량을 사용한다.

이분산이기 때문에 검정 통계량 식에서 s1, s2가 빠져나오지 못한다는 것이 앞의 문제와 차이이다.

밑의 자유도 식은 뒷 과정에서 다룰 것이다.

728x90
728x90

[통계 기초의 모든것 올인원] 메타코드 강의 후기 - 검정

https://mcode.co.kr/video/list2?viewMode=view&idx=94

 

메타코드M

AI / 빅데이터 강의 플랫폼 & IT 현직자 모임 플랫폼 | 메타코드 커뮤니티 일원이 되시기 바랍니다.

www.metacodes.co.kr

 

가설검정 정리

일반적으로 제 1종 오류가 더 중요하다.

신약을 예시로 들면 좀 더 이해하기 편하다.

귀무가설이 "신약이 기존 약과 큰 약효의 차이가 없다"라고 했을 때,

제 1종 오류를 범한다면 신약이 약효가 있음에도 없다고 하는 것이 된다. 비즈니스적으로는 불리한 점이 생기지만 치명적인 문제는 생기지 않게 된다.

 

검정 - 요소

p-value는 데이터에서 계산하는 것이다.

미리 지정해둔 값 알파보다 계산된 p-value가 크다면 귀무가설을 기각한다.

예시) 알파가 0.05라면, p-value가 0.05 미만으로 나온 상황에서는 귀무가설을 기각한다.

기각역과 채택역에서는 검정통계량의 관측값이 어디에 속하는지 확인하고, 기각역에 속한다면 귀무가설을 기각한다.

 

검정의 종류

양측 검정에서는 양쪽에 있는 너비의 합이 알파가 되도록 한다.

즉, 각각의 영역의 너비는 ( 알파 / 2)이다.

단측 검정에서는 한 쪽에 있는 영역의 너비가 알파가 되도록 한다.

양측 검정에서는 같지 않다, 단측 검정에서는 크다 혹은 작다로 부등호를 정한다.

 

검정 - 모평균 검정, 표본의 크기가 큰 경우

표본의 크기가 크다면, 모분산을 알든 모르든 Z 검정 통계량을 사용할 수 있다.

다만, 모분산을 아냐 모르느냐에 따라 모평균(시그마)를 사용할지 표본평균(S)를 사용할지는 나뉘게 된다.

표본이 크기 때문에 x bar 자체는 정규분포를 따르게 된다.

계산된 Z 값을 아래의 표에 따라 적용하면 귀무가설을 채택할지 기각할지를 정할 수 있다.

 

검정 - 모비율 검정 예제

발병률이 3%인데, 100명( n=100 )을 대상으로 조사하니 2명으로 확률보다 더 낮게 나온 상황이다.

이 문제는 이항검정법으로 접근한다.

알파가 0.05로 나왔으니, 임계값 c를 찾는 것이 목표이다.

e 위에 지수가 3인 이유는 np로 계산하기 때문이다. n = 100이고, p = 0.03이므로 계산 결과는 3이 된다.

 

모비율 검정

"p0", "q0"는 귀무가설이 맞다는 가정에서의 값을 말한다.

분자에서는 P에 대한 기댓값이 "p0"라는 가정으로 빼는 과정을 수행하는 것이다.

분모에서도 마찬가지 논리로 Standard Error를 계산하는 것이다.

예시로는, "상대방 말이 맞다는 전제 하에서 논리를 전개해보고 오류가 생기는지 확인하는 것이다"를 들어주었다.

 

728x90
728x90

[통계 기초의 모든것 올인원] 메타코드 강의 후기 - 구간추정/표본크기결정, 검정

https://mcode.co.kr/video/list2?viewMode=view&idx=94

 

메타코드M

AI / 빅데이터 강의 플랫폼 & IT 현직자 모임 플랫폼 | 메타코드 커뮤니티 일원이 되시기 바랍니다.

www.metacodes.co.kr

 

모평균의 구간추정

- 표본 크기가 크지 않은 경우에,

만약 모분산을 안다면, 모분산 시그마와 Z 통계량을 사용한다.

모분산을 모르는 상황이라면 표본분산 S와 t 통계량을 사용해야 한다.

 

- 표본 크기가 크다면,

모분산을 안다면 모분산 시그마와 Z 통계량을 사용한다.

모분산을 모른다면 표본분산 S를 사용하는 것은 위와 동일하나 Z 통계량을 사용한다는 점에서 차이가 있다.

 

모비율의 구간추정

- B(1, p) 형태

 Binomial 분포에서 n이 1인 경우가 베르누이 분포이다.

 

- 근사신뢰구간

 앞에 비율에 대한 내용이 나오고, 그 뒤에 플러스(+), 마이너스(-) 연산을 하여 신뢰구간을 구한다.

 Bell Shaped이기 때문에 Z 통계량은 하나만 알면 된다.

 

추정 - 표본크기 결정

모비율 추정

- 만약 p에 대한 사전직이 없는 경우 보통 "1/2" 로 한다.

 밑의 식이 p를 "1/2" 로 계산하여 만든 식이다.

 두 번째 식의 경우에는 사전지식이 있는 경우로 p와 q의 곱으로 계산함을 확인할 수 있다.

 

검정

앞에서 수업한 대로 통계에서는 신뢰구간을 많이 사용한다.

가설 검정의 경우에는 두 집단 간의 차이가 있을 때, 어느 정도 수준부터 유의미한 차이가 있다고 봐야하는지 결정하는데에 사용한다.

통계적 검증 결과에 따라 귀무가설과 대립가설 중에서 어떤 것을 채택할지 결정한다.

강의에서는 출생률, 승률을 예시로 하였다.

 

가설의 종류

가설의 종류에는 귀무가설과 대립가설이 존재한다.

검정 과정에서는 귀무가설을 채택할 것인지, 기각할 것인지 정한다.

귀무 가설에서는 등호를 사용하는 것이 중요하다.

 

- 밑의 예시에서는

평균(뮤)가 0.6 이하인 것이"귀무가설", 0.6보다 크다는 것이 "대립가설"에 해당하며 등호를 사용한 것에 주목한다.

 

가설 설정의 오류

- 제 1종 오류는 귀무가설을 채택해야  했지만, 기각한 경우를 말한다.

 즉, 입증하고자 하는 내용이 맞았지만 기각했음을 말한다.

 예시) 신약이 효과가 없다는 가설을 채택해야 했는데, 기각한 경우

 

- 제 2종 오류는 귀무가설을 기각해야 했지만, 채택한 경우를 말한다.

 즉, 제 1종 오류의 반대의 경우를 말한다.

728x90
728x90

[통계 기초의 모든것 올인원] 메타코드 강의 후기 - 점추정/구간추정

https://mcode.co.kr/video/list2?viewMode=view&idx=94

 

메타코드M

빅데이터 , AI 강의 플랫폼 & IT 현직자 모임 플랫폼ㅣ메타코드 커뮤니티 일원이 되시기 바랍니다.

mcode.co.kr

 

추정 - 점 추정 => 불편성, 유효성

- 불편성은 편향이 되지 않는다는 것을 의미한다.

(n-1)으로 나누는 이유는 모수의 불편성을 만족시키기 위함이다.

- 유효성은 추정량의 표준오차로 흩어짐의 정도를 나타내는 측도로,

불편추정량 "세타 1"이 "세타 2"보다 작다면 추정량 "세타 1"이 더 유효하다.

 

점 추정 - 모평균의 추정, 오차한계

모평균의 추정에는 주로 표본평균을 사용한다.

모표준편차를 알면 시그마, 모른다면 표본 표준편차 s를 사용한다.

오차 한계에서, 해당 수식의 경우 모평균을 1,000번 추정했을 때, 오차범위 내에 있는 값이 954번 나올 확률을 의미한다.

한계값 수식은 ( 2 시그마 ) / ( 루트 n )이다.

 

추정 - 점 추정 => 모비율의 추정

식에서 X는 확률 변수에 해당한다.

X는 어떤 특정 사건의 발생 횟수를 말한다.

X는 이산형 확률변수로 모델링을 해야하며 B(n, p)로 binomial 분포를 따른다.

n에는 전체 횟수, p는 특정 사건의 횟수를 말한다.

일치성은 표본의 갯수 증가할수록 추정량이 모수로 수렴하는 성질을 말한다.

 

추정 - 구간추정

보통 추정을 할 때는 구간추정을 많이 사용한다.

(알파 = 0.05)로 한다면 (1 - 알파 ) = 0.95가 된다.

식에 대입하면 모수 세타가 a와 b 사이에 위치할 확률이 95%라는 의미가 된다.

신뢰구간은 모수를 포함할 것으로 추정한 구간을 말한다.

 

모평균의 구간추정

모분산을 안다면 정규분포를 사용한다.

즉, Z 통계량을 사용하게 된다.

90%, 95%, 99% 신뢰구간에 대한 Z 통계량 값은 자주 나오는 개념이므로 외워둔다면 도움이 된다.

주로 양측 검증을 하게 되므로 10% 를 예시로 든다면 0.05에 대한 Z 통계량을 사용하는 것이다.

표준정규분포이므로, 0을 기준으로 대칭이기 때문에 하나의 Z 통계량 값만 안다면 반대쪽의 Z 값도 아는 것이 된다.

 

추정 - 모평균의 구간추정

모분산을 모르는 경우라면 t 통계량을 사용한다.

단, 표본크기가 클 경우에는 Z 통계량을 사용할 수 있게 된다.

모분산을 모르는 상황이므로 수식에서 표본 표준편차 s 를 사용함을 확인할 수 있다.

관심 대상은 모수로, 모수가 어느 구간에 속할 것인가에 초점을 맞추면 된다.

728x90

+ Recent posts